Муниципальное бюджетное общеобразовательное учреждение «Средняя общеобразовательная школа № 28» г.Белгорода

РАССМОТРЕНО	СОГЛАСОВАНО	УТВЕРЖДАЮ
на заседании ШМО	заместитель директора	директор школы
учителей биологии, химии	Г.Е.Немакина	/Е.В.Литвинова/
Протокол заседания МО		
учителей от «14» июня	«28» августа 2021 г	Приказ от 29.08.2022 г. №423
2021 г. № 7	-	

Рабочая программа

по учебному предмету

«химих»

на уровень основного общего образования

(8-9 класс)

год создания - 2021

Содержание программы

Пояснительная записка.

- 1. Планируемые результаты освоения учебного предмета «Химия».
- 2. Содержание учебного предмета «Химия».
- 3. Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы с учетом реализации Рабочей программы воспитания.

Оценочный модуль

Пояснительная записка

Рабочая программа по химии для уровня основного общего образования (8-9 класс) составлена на основании ФГОС основного общего образования, Примерной программы и направлена на реализацию УМК Гара Н.Н. Химия; линия учебников Г.Е. Рудзитиса, Ф. Г. Фельдмана.

Программа предусматривает реализацию в объеме 2 часа в неделю.

Программой предусмотрено проведение: 8 класс -6 контрольных работ, 7 практических работ -7; 9 класс -4 контрольных работы; 7 практических работ.

1. Планируемые результаты освоения учебного предмета

Личностные результаты:

1) Формирование чувства гордости за российскую химическую науку;

- 2) Формирование целостного мировоззрения, соответствующего современному уровню развития науки и общественной практики, а также социальному, культурному, языковому и духовному многообразию современного мира;
- 3) Формирование ответственного отношения к учению, готовности и способности к саморазвитию и самообразованию на основе мотивации к обучению и познанию, выбору профильного образования на основе информации о существующих профессиях и личных профессиональных предпочтений, осознанному построению индивидуальной образовательной траектории с учетом устойчивых познавательных интересов;
- 4) Формирование коммуникативной компетентности в образовательной, общественно полезной, учебно исследовательской, творческой и других видах деятельности;
- 5) Формирование ценности здорового и безопасного образа жизни; усвоение правил индивидуального и коллективного безопасного поведения в чрезвычайных ситуациях, угрожающих жизни и здоровья людей;
- 6) Формирование познавательной и информационной культуры, в том числе развитие навыков самостоятельной работы с учебными пособиями, книга- ми, доступными инструментами и техническими средствами информационных технологий;
- 7) Формирование основ экологического сознания на основе признания ценности жизни во всех ее проявлениях и необходимости ответственного, бережного отношения к окружающей среде;
- 8) Развитие готовности к решению творческих задач, умения находить адекватные способы поведения и взаимодействия с партнерами во время учебной и внеучебной деятельности, способности оценивать проблемные ситуации и оперативно принимать ответственные решения в различных продуктивных видах деятельности (учебная поисково исследовательская, клубная, проектная, кружковая и тп.).

Метапредметные результаты:

- 1) Овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, поиска средств её осуществления;
- 2) Умение планировать пути достижения целей на основе самостоятельного анализа условий и средств достижения этих целей, выделять альтернативные способы достижения цели и выбирать наиболее эффективный способ, осуществлять познавательную рефлексию в отношении действий по решению учебных и познавательных задач;
 - 3) Понимание проблемы, умение ставить вопросы, выдвигать гипотезу, давать

определения понятиям, классифицировать, структурировать материал, проводить эксперименты, аргументировать собственную позицию, формулировать выводы, и заключения;

- 4) Формирование и развитие компетентности в области использования инструментов и технических средств информационных технологий как инструментальной основы развития коммуникативных и познавательных универсальных учебных действий;
- 5) Умение извлекать информацию из различных источников, умение свободно пользоваться справочной литературой, в том числе и на электронных носителях, соблюдать нормы информационной избирательности, этики;
- 6) Умение на практике пользоваться основными логическими приёма- ми, методами наблюдения, моделирования, объяснения, решения проблем, прогнозирования и др.;
- 7) Умение организовать свою жизнь в соответствии с представлениями о здоровом образе жизни, правах и обязанностях гражданина, ценностях бытия, культуры и социального взаимодействия;
- 8) Умение выполнять познавательные и практические задания, в том числе проектные;
- 9) Формирование умения самостоятельно и аргументированно оценивать свои действия и действия одноклассников, содержательно обосновывая правильность или ошибочность результата и способа действия, адекватно оценивать объективную трудность как меру фактического или предполагаемого расхода ресурсов на решение задачи, а также свои возможности в достижении цели определенной сложности;
- 10) Умение работать в группе эффективно сотрудничать и взаимодействовать на основе координации различных позиций при выработке общего решения в совместной деятельности; слушать партнера, формулировать и аргументировать свое мнение, корректно отстаивать свою позицию и координировать ее с позицией партнеров, в том числе в ситуации столкновения интересов и позиций всех его участников, поиска и оценки альтернативных способов разрешения конфликтов.

Предметные результаты обучения:

Первоначальные химические понятия. Вещества.

Обучаемый научится:

• описывать свойства твёрдых, жидких, газообразных веществ, выделяя их существенные признаки;

- характеризовать вещества по составу, строению и свойствам, устанавливать причинно-следственные связи между данными характеристиками вещества;
- раскрывать смысл основных химических понятий «атом», «молекула», «химический элемент», «простое вещество», «сложное вещество», «валентность», используя знаковую систему химии;
- изображать состав простейших веществ с помощью химических формул и сущность химических реакций с помощью химических уравнений;
- вычислять относительную молекулярную и молярную массы веществ, а также массовую долю химического элемента в соединениях для оценки их практической значимости;
 - сравнивать по составу оксиды, основания, кислоты, соли;
- классифицировать оксиды и основания по свойствам, кислоты и соли по составу;
- описывать состав, свойства и значение (в природе и практической деятельности человека) простых веществ кислорода и водорода;
- давать сравнительную характеристику химических элементов и важнейших соединений естественных семейств;
 - пользоваться лабораторным оборудованием и химической посудой;
- проводить несложные химические опыты и наблюдения за изменениями свойств веществ в процессе их превращений; соблюдать правила техники безопасности при проведении наблюдений и опытов;
- различать экспериментально кислоты и щёлочи, пользуясь индикаторами; осознавать необходимость соблюдения мер безопасности при обращении с кислотами и щелочами.

Обучаемый получит возможность научиться:

- грамотно обращаться с веществами в повседневной жизни;
- осознавать необходимость соблюдения правил экологически безопасного поведения в окружающей природной среде;
- понимать смысл и необходимость соблюдения предписаний, предлагаемых в инструкциях по использованию лекарств, средств бытовой химии и др.;
- использовать приобретённые ключевые компетентности при выполнении исследовательских проектов по изучению свойств, способов получения и распознавания веществ;

- развивать коммуникативную компетентность, используя средства устной и письменной коммуникации при работе с текстами учебника и дополнительной литературой, справочными таблицами, проявлять готовность к уважению иной точки зрения при обсуждении результатов выполненной работы;
- объективно оценивать информацию о веществах и химических процессах, критически относиться к псевдонаучной информации, недобросовестной рекламе, касающейся использования различных веществ.

Периодический закон и периодическая система химических элементов Д. И. Менделеева. Строение вещества.

Обучаемый научится:

- классифицировать химические элементы на металлы, неметаллы, элементы, оксиды и гидроксиды которых амфотерны, и инертные элементы (газы) для осознания важности упорядоченности научных знаний;
 - раскрывать смысл периодического закона Д. И. Менделеева;
- описывать и характеризовать табличную форму периодической системы химических элементов;
- характеризовать состав атомных ядер и распределение числа электронов по электронным слоям атомов химических элементов малых периодов периодической системы, а также калия и кальция;
- различать виды химической связи: ионную, ковалентную полярную, ковалентную неполярную и металлическую;
- изображать электронно-ионные формулы веществ, образованных химическими связями разного вида;
- выявлять зависимость свойств веществ от строения их кристаллических решёток: ионных, атомных, молекулярных, металлических;
- характеризовать химические элементы и их соединения на основе положения элементов в периодической системе и особенностей строения их атомов;
- описывать основные этапы открытия Д. И. Менделеевым периодического закона и периодической системы химических элементов, жизнь и многообразную научную деятельность учёного;
- характеризовать научное и мировоззренческое значение периодического закона и периодической системы химических элементов Д. И. Менделеева;
- осознавать научные открытия как результат длительных наблюдений, опытов, научной полемики, преодоления трудностей и сомнений.

Обучаемый получит возможность научиться:

- осознавать значение теоретических знаний для практической деятельности человека:
- описывать изученные объекты как системы, применяя логику системного анализа;
- применять знания о закономерностях периодической системы химических элементов для объяснения и предвидения свойств конкретных веществ;
- развивать информационную компетентность посредством углубления знаний об истории становления химической науки, её основных понятий, периодического закона как одного из важнейших законов природы, а также о современных достижениях науки и техники.

Многообразие химических реакций.

Обучаемый научится:

- объяснять суть химических процессов и их принципиальное отличие от физических;
 - называть признаки и условия протекания химических реакций;
- устанавливать принадлежность химической реакции к определённому типу по одному из классификационных признаков: 1) по числу и составу исходных веществ и продуктов реакции (реакции соединения, разложения, замещения и обмена); 2) по выделению или поглощению теплоты (реакции экзотермические и эндотермические); 3) по изменению степеней окисления химических элементов (реакции окислительновосстановительные);
- составлять уравнения реакций, соответствующих последовательности («цепочке») превращений неорганических веществ различных классов;
- выявлять в процессе эксперимента признаки, свидетельствующие о протекании химической реакции;
- приготовлять растворы с определённой массовой долей растворённого вещества.

Обучаемый получит возможность научиться:

• приводить примеры реакций, подтверждающих существование взаимосвязи между основными классами неорганических веществ. Многообразие веществ.

Обучаемый научится:

- определять принадлежность неорганических веществ к одному из изученных классов/групп: металлы и неметаллы, оксиды, основания, кислоты, соли;
 - составлять формулы веществ по их названиям;

- определять валентность и степень окисления элементов в веществах;
- составлять формулы неорганических соединений по валентностям и степеням окисления элементов, а также зарядам ионов, указанным в таблице растворимости кислот, оснований и солей;
- объяснять закономерности изменения физических и химических свойств простых веществ (металлов и неметаллов) и их высших оксидов, образованных элементами второго и третьего периодов;
- называть общие химические свойства, характерные для групп оксидов: кислотных, основных, амфотерных;
- называть общие химические свойства, характерные для каждого из классов неорганических веществ: кислот, оснований, солей;
- приводить примеры реакций, подтверждающих химические свойства неорганических веществ: оксидов, кислот, оснований и солей;
- определять вещество-окислитель и вещество-восстановитель в окислительно-восстановительных реакциях;
- составлять окислительно-восстановительный баланс (для изученных реакций) по предложенным схемам реакций;
- проводить лабораторные опыты, подтверждающие химические свойства основных классов неорганических веществ.

Обучаемый получит возможность научиться:

- прогнозировать химические свойства веществ на основе их состава и строения;
- прогнозировать способность вещества проявлять окислительные или восстановительные свойства с учётом степеней окисления элементов, входящих в его состав;
- выявлять существование генетической взаимосвязи между веществами в ряду: простое вещество оксид гидроксид соль.

2. Содержание учебного предмета

8 класс

Раздел 1. Первоначальные химические понятия - 19 ч

Предмет химии. Тела и вещества. Основные методы познания: наблюдение, измерение, эксперимент. Физические и химические явления. Чистые вещества и смеси. Способы разделения смесей. Атом. Молекула. Химический элемент. Знаки химических элементов. Простые и сложные вещества. Валентность. Закон постоянства состава вещества. Химические формулы. Индексы. Относительная атомная и молекулярная массы. Массовая доля

химического элемента в соединении. Закон сохранения массы веществ. Химические уравнения. Коэффициенты. Условия и признаки протекания химических реакций. Моль — единица количества вещества. Молярная масса.

Демонстрации: Ознакомление с лабораторным оборудованием; приемы безопасной работы с ним. Способы очистки веществ. Примеры физических и химических явлений. Примеры простых и сложных веществ. Модели кристаллических решёток. Опыты, подтверждающие закон сохранения масс. Реакции разных типов.

Лабораторные опыты с 1-7 «Разложение малахита. Реакция замещения меди с железом». Рассмотрение веществ с различными физическими свойствами. Разделение смесей. Химические явления (прокаливание медной проволоки, взаимодействие мела с кислотой). Физические явления (плавление парафина). Знакомство с образцами простых и сложных веществ. Разложение основного карбоната меди. Реакция замещения меди железом.

Практические работы:

- Приемы безопасной работы с оборудованием и веществами. Строение пламени.
 - Очистка загрязненной поваренной соли.

Раздел 2. Кислород. Водород. Закон Авогадро – 17 ч

Кислород – химический элемент и простое вещество. Озон. Состав воздуха. Физические и химические свойства кислорода. Получение и применение кислорода. Тепловой эффект химических реакций. Понятие об экзо- и эндотермических реакциях. Водород – химический элемент и простое вещество. Физические и химические свойства водорода. Получение водорода в лаборатории. Получение водорода в промышленности. Применение водорода. Закон Авогадро. Молярный объем газов. Качественные реакции на газообразные вещества (кислород, водород). Объемные отношения газов при химических реакциях.

Демонстрации: Свойства кислорода. Определение состава воздуха. Взаимодействие водорода с оксидом меди (II).

Лабораторный опыт 8. Знакомство с образцами оксидов.

Лабораторный опыт 9 Взаимодействие водорода с оксидом меди (II.)

Практические работы:

- Получение и свойства кислорода.
- Получение водорода и исследование его свойств.

Раздел 3. Вода. Растворы – 5 часов

Вода в природе. Круговорот воды в природе. Физические и химические свойства воды. Растворы. Растворимость веществ в воде. Концентрация растворов. Массовая доля растворенного вещества в растворе.

Демонстрации: Растворение веществ с различной растворимостью, растворение веществ в различных растворителях. Получение кристаллов солей. Растворение нитрата аммония. Взаимодействие натрия и кальция с водой.

Практические работы:

• Приготовление растворов солей с определенной массовой долей растворенного вещества.

Раздел 4. Основные классы неорганических соединений - 13 часов

Оксиды. Классификация. Номенклатура. Физические свойства оксидов. Химические свойства оксидов. Получение и применение оксидов. Основания. Классификация. Номенклатура. Физические свойства оснований. Получение оснований. Химические свойства оснований. Реакция нейтрализации. Кислоты. Классификация. Номенклатура. Физические свойства кислот. Получение и применение кислот. Химические свойства кислот. Индикаторы. Изменение окраски индикаторов в различных средах. Соли. Классификация. Номенклатура. Физические свойства солей. Получение и применение солей. Химические свойства солей. Генетическая связь между классами неорганических соединений. Проблема безопасного использования веществ и химических реакций в повседневной жизни. Токсичные, горючие и взрывоопасные вещества. Бытовая химическая грамотность.

Демонстрации: Химические соединения в количестве моль. Образцы соединений.

Лабораторные опыты 10 – 16

Свойства растворимых и нерастворимых оснований.

Взаимодействие щелочей с кислотами.

Взаимодействие нерастворимых оснований с кислотами.

Разложение гидроксида меди при нагревании

Взаимодействие гидроксида цинка с растворами кислот и щелочей. Действие кислот на индикаторы

Отношение кислот к металлам.

Практические работы:

- Реакция обмена.
- Решение экспериментальных задач по теме «Основные классы неорганических соединений».

Раздел 5. Строение атома. Периодический закон и периодическая система химических элементов Д.И. Менделеева- 8 часов.

Строение атома: ядро, энергетический уровень. Состав ядра атома: протоны, нейтроны. Изотопы. Периодический закон Д.И. Менделеева. Периодическая система химических элементов Д.И. Менделеева. Физический смысл атомного (порядкового) номера химического элемента, номера группы и периода периодической системы. Строение энергетических уровней атомов первых 20 химических элементов периодической системы Д.И. Менделеева. Закономерности изменения свойств атомов химических элементов и их соединений на основе положения в периодической системе Д.И. Менделеева и строения атома. Значение Периодического закона Д.И. Менделеева.

Демонстрации: Различные варианты периодической системы. Модель строения атома. Физические свойства щелочных металлов, галогенов. Сопоставление физико-химических свойств соединений с ковалентными и ионными связями.

Раздел 6. Строение веществ. Химическая связь - 4 ч

Электроотрицательность атомов химических элементов. Ковалентная химическая связь: неполярная и полярная. Понятие о водородной связи и ее влиянии на физические свойства веществ на примере воды. Ионная связь. Металлическая связь. Типы кристаллических решеток (атомная, молекулярная, ионная, металлическая). Зависимость физических свойств веществ от типа кристаллической решетки.

Раздел 7. Повторение и обобщение знаний за курс химии 8 класса – 2 часа.

Повторение и обобщение знаний. Итоговая контрольная работа.

9 класс

Раздел 1. Химические реакции – 18 ч часов

Понятие о скорости химической реакции. Факторы, влияющие на скорость химической реакции. Понятие о катализаторе. Классификация химических реакций по различным признакам: числу и составу исходных и полученных веществ; изменению степеней окисления атомов химических элементов; поглощению или выделению энергии. Электролитическая диссоциация. Электролиты и неэлектролиты. Ионы. Катионы и анионы. Реакции ионного обмена. Условия протекания реакций ионного обмена. Электролитическая диссоциация кислот, щелочей и солей. Степень окисления. Определение степени окисления атомов химических элементов в соединениях. Окислитель. Восстановитель. Сущность окислительновосстановительных реакций.

Демонстрации.

Демонстрация опытов, выясняющих зависимость скорости химических реакций от различных факторов. Испытание растворов веществ на электрическую проводимость. Движение ионов в электрическом поле.

Лабораторные опыты. Реакции обмена между растворами электролитов.

Практические работы:

- 1. Реакции ионного обмена.
- 2. Качественные реакции на ионы в растворе.

Раздел 2. Многообразие веществ – 44 часа

1. Неметаллы IV – VII групп и их соединения

Положение неметаллов в периодической системе химических элементов Д.И. Менделеева. Общие свойства неметаллов. Галогены: физические и химические свойства. Соединения галогенов: хлороводород, хлороводородная кислота и ее соли. Сера: физические и химические свойства. Соединения серы: сероводород, сульфиды, оксиды серы. Серная, сернистая и сероводородная кислоты и их соли. Азот: физические и химические свойства. Аммиак. Соли аммония. Оксиды азота. Азотная кислота и ее соли. Фосфор: физические и химические свойства. Соединения фосфора: оксид фосфора (V), ортофосфорная кислота и ее соли. Углерод: физические и химические свойства. Аллотропия углерода: алмаз, графит, карбин, фуллерены. Соединения углерода: оксиды углерода (II) и (IV), угольная кислота и ее соли. Кремний и его соединения.

Демонстрации. Физические свойства галогенов. Получение хлороводорода и растворение его в воде. Аллотропия кислорода и серы. Знакомство с образцами природных сульфидов, сульфатов. Получение аммиака и его растворение в воде. Ознакомление с образцами природных нитратов, фосфатов. Кристаллические решетки алмаза и графита. Знакомство с образцами природных карбонатов и силикатов. Ознакомление с различными видами топлива. Ознакомление с видами стекла.

Лабораторные опыты. Распознавание соляной кислоты, хлоридов, бромидов, иодидов и иода. Распознавание сульфид-, сульфит- и сульфат-ионов в растворе. Взаимодействие солей аммония со щелочами. Ознакомление с азотными и фосфорными удобрениями. Ознакомление со свойствами и взаимопревращениями карбонатов и гидрокарбонатов. Качественные реакции на карбонат- и силикат-ионы. Получение гидроксида алюминия и взаимодействие его с кислотами и щелочами. Получение гидроксидов железа(II) и (III) и взаимодействие их с кислотами и щелочами.

Практические работы:

- 1. Получение аммиака и изучение его свойств.
- 2. Получение углекислого газа и изучение его свойств.

Решение экспериментальных задач по теме «Неметаллы IV - VII групп и их соединений».

2. Металлы и их соединения

Положение металлов в периодической системе химических элементов Д.И. Менделеева. Металлы в природе и общие способы их получения. Общие физические свойства металлов. Общие химические свойства металлов: реакции с неметаллами, кислотами, солями. Электрохимический ряд напряжений металлов. Щелочные металлы и их соединения. Щелочноземельные металлы и их соединения. Алюминий. Амфотерность оксида и гидроксида алюминия. Железо. Соединения железа и их свойства: оксиды, гидроксиды и соли железа (II и III).

Демонстрации: Знакомство с образцами важнейших солей натрия, калия, природных соединений кальция, рудами железа, соединениями алюминия.

Лабораторные опыты: Взаимодействие щелочных, щелочноземельных металлов и алюминия с водой. Сжигание железа в кислороде и хлоре.

Практические работы: Решение экспериментальных задач по теме «Металлы и их соединения».

Раздел 3. Первоначальные сведения об органических веществах- 4 часа

Первоначальные сведения о строении органических веществ. Углеводороды: метан, этан, этилен. Источники углеводородов: природный газ, нефть, уголь. Кислородсодержащие соединения: спирты (метанол, этанол, глицерин), карбоновые кислоты (уксусная кислота, аминоуксусная кислота, стеариновая и олеиновая кислоты). Биологически важные вещества: жиры, глюкоза, белки. Химическое загрязнение окружающей среды и его последствия.

Демонстрации. Модели молекул органических соединений, схемы, таблицы. Горение углеводородов и обнаружение продуктов их горения. Образцы нефти и продуктов их переработки.

3. Тематическое планирование с указанием количества часов, отводимых на освоение каждой темы с учетом реализации

Рабочей программы воспитания

Тематическое планирование ориентировано на положения модуля 4.2. «Школьный урок» Рабочей программы воспитания, являющейся частью содержательного раздела данной образовательной программы

8 класс 68 часов (2 ч в неделю)

	Наименование темы	Количество часов
	Первоначальные химические понятия.	19
2	Кислород. Водород. Закон Авогадро.	17
3	Растворы	5
4	Основные классы неорганических соединений	13
5	Периодический закон. Строение атома.	8
6	Строение веществ. Химическая связь	4
7	Повторение курса	2
	Итого в 8 классе	68

9 класс 68 часов (2 ч в неделю)

No	Наименование темы	Количество часов
1	Повторение основных вопросов курса 8 класса	1
2	Многообразие химических реакций	17
3	Многообразие веществ	44
4	Краткий обзор важнейших органических веществ	4
5	Резервное время	2
	Итого в 9 классе	68

Оценочный модуль Практические работы по химии 8 класс

1.Практическая работа №1 «Приемы безопасной работы с оборудованием и веществами. Строение пламени. Инструктаж по т/б».

Ход работы:

- 1. Правила техники безопасности (пар.2).
- 2. Приемы обращения с лабораторным штативом.
- 3. Приемы обращения со спиртовкой.
- 4. Изучение строения пламени.

2. Практическая работа №2 «Очистка загрязненной поваренной соли»

Ход работы:

- 1. Инструктаж по технике безопасности.
- 2. Растворение загрязненной поваренной соли.
- 3. Очистка полученного раствора при помощи фильтрования.
- 4. Выпаривание раствора.
- 5. Отчет о работе.

3. Практическая работа №3 «Получение и свойства кислорода»

Ход работы:

- 1. Инструктаж по технике безопасности.
- 2. Получение и собирание кислорода.
- 3. Горение в кислороде угля и серы.
- 4. Отчет о работе.

4. Практическая работа №4 «Получение водорода и исследование его свойств»

Ход работы:

- 1. Инструктаж по технике безопасности.
- 2. Получение водорода и его собирание методом вытеснения воды.
- 3. Получение водорода и его собирание методом вытеснения воздуха.
- 4. Горение водорода.
- 5. Отчет о работе.

5. Практическая работа №5. «Приготовление раствора с определенной массовой долей растворенного вещества (соли)»

Ход работы:

- 1. Инструктаж по технике безопасности.
- 2. Проведение расчетов.
- 3. Взвешивание.
- 4. Приготовление раствора.
- 5. Отчет о работе.

6. Практическая работа №6 «Реакция обмена».

Ход работы:

- 1. Инструктаж по технике безопасности.
- 2. Взаимодействие кислот и оснований.
- 3. Взаимодействие кислот и солей.
- 4. Взаимодействие щелочей и солей.
- 5. Взаимодействие солей друг с другом.
- 6. Отчет о работе.

7. Практическая работа №7. «Решение экспериментальных задач по теме «Основные классы неорганических соединений».

Ход работы:

- 1. Инструктаж по технике безопасности.
- 2. Выполнение задачи №1. «Различить два химических вещества, не проводя химических опытов».
 - 3. Выполнение задачи №2. «Распознавание кислот и щелочей».
- 4. Выполнение задачи №3 «Очистка железного гвоздя от ржавчины химическим путем».
 - 5. Выполнение задачи №4. «Получение сульфата меди (П) несколькими способами».
 - 6. Выполнение задачи №5. «Получение солей опытным путем».
 - 7. Отчет о работе.

Практические работы по химии 9 класс

1. Практическая работа №1. «Изучение влияния условий проведения химической реакции на ее скорость».

Ход работы:

- 1. Инструктаж по технике безопасности.
- 2. Влияние природы реагирующих веществ.
- 3. Влияние концентрации реагирующих веществ.
- 4. Влияние поверхности соприкосновения реагентов.
- 5. Влияние температуры.
- 6. Влияние катализатора.
- 7. Отчет о работе.

2. Практическая работа №2. «Решение экспериментальных задач по теме «Свойства кислот, оснований и солей как электролитов».

Ход работы:

- 1. Инструктаж по технике безопасности.
- 2. Выполнение задания №1: взаимодействие кислот с металлами.
- 3. Выполнение задания №2: взаимодействие хлорида магния с солями и щелочами.
- 4. Выполнение задания №3: Реакции ионного обмена между различными электролитами».
- 5. Выполнение задания №4: Осуществление реакций по предложенным схемам превращений.
 - 6. Выполнение задания №5: получение солей реакцией обмена.
 - 7. Отчет о работе.

3. Практическая работа №3. «Получение соляной кислоты и изучение ее свойств» Ход работы:

- 1. Инструктаж по технике безопасности.
- 2. Опыт 1: получение соляной кислоты.
- 3. Опыт 2: Химические свойства соляной кислоты
- 4. Опыт 3: распознавание соляной кислоты и ее солей
- 5. Отчет о работе.

4.Практическая работа №4. «Решение экспериментальных задач по теме «Кислород и сера»

Ход работы:

- 1. Инструктаж по технике безопасности.
- 2. Выполнение задачи №1. Определение опытным путем веществ.
- 3. Выполнение задачи №2. Получение солей.
- 4. Выполнение задачи №3. Распознавание различных веществ. Качественные реакции на анионы и катионы.
 - 5. Выполнение задачи №4. Осуществите практически превращения по схеме.
 - 6. Выполнение задачи №5 Качественный состав серной и соляной кислот.
 - 7. Оформление отчета.

5. Практическая работа №5. «Получение аммиака и изучение его свойств». Ход работы:

- 1. Инструктаж по технике безопасности.
- 2. Получение аммиака и растворение его в воде.
- 3. Горение аммиака в кислороде.
- 4. Взаимодействие аммиака с кислотами
- 5. Отчет о работе.

6. Практическая работа №6 «Получение оксида углерода (IV) и изучение его свойств. Распознавание карбонатов».

Ход работы:

- 1. Инструктаж по технике безопасности.
- 2. Получение оксида углерода (4) и изучение его свойств.
- 3. Распознавание карбонатов.
- 4. Отчет о работе.

7. Практическая работа №7. «Решение экспериментальных задач по теме «Металлы».

Ход работы:

- 1. Инструктаж по технике безопасности.
- 2. Выполнение задачи №1: Распознавание веществ.
- 3. Выполнение задачи №2: Качественные реакции на катионы и анионы.
- 4. Выполнение задачи №3: Качественные реакции на катионы Ме.
- 5. Выполнение задачи №4: Осуществление химических превращений по схеме.

6. Отчет о работе.

Контрольные работы по химии 8 класс

1. Контрольная работа №1 по теме «Первоначальные химические понятия».

Вариант 1

Задание №1. Определите валентность химических элементов по формулам соединений: ВаВг₂, NaH, N₂O, P₂O₅

Задание №2. Составить формулы соединений, в состав которых входят следующие элементы: Водород и сера, углерод (IV) и кислород, кальций и азот

Задание №3. Расставьте коэффициенты в уравнении химических реакций и укажите тип реакции:

$$Fe + F_2 = Fe F_3$$
 $Zn + HCl = ZnCl_2 + H_2$

Задание №4. Допишите уравнения реакции, расставьте коэффициенты

$$K+O_2=?$$
 $H_2+Cl_2=?$

Задание №5. Решите задачи

Вычислить массу 6 моль сероводорода H₂S. Чему равна массовая доля серы в H₂S?

Вариант 2

Задание №1. Определите валентность химических элементов по формулам соединений: $FeBr_2$, CH_4 , N_2O_3 , SO_3

Задание №2. Составить формулы соединений, в состав которых входят следующие элементы:

Водород и кальций, железо (ІІ) и кислород, натрий и азот

Задание №3. Расставьте коэффициенты в уравнении химических реакций и укажите тип реакции:

$$Li + O_2 = Li_2O$$
 $Al + HCl = AlCl_3 + H_2$

Задание №4. Допишите уравнения реакции, расставьте коэффициенты

$$Mg+O_2=?$$
 Ba+S=?

Задание №5. Решите задачи:

Вычислите массу 7 моль дисульфида железа FeS_2 . Чему равна массовая доля железа в дисульфиде железа?

1. Контрольная работа № 2 по темам: «Кислород. Водород. Растворы. Вода».

Вариант 1

Задание 1. Закончите уравнения реакций и расставьте коэффициенты.

$$P+O_2=....$$

$$Na+H_2=....$$

$$K+H_2O=....+...$$

Задание 2. Вставьте пропущенные формулы и закончите уравнения реакций, расставьте коэффициенты.

PbO+....=....+
$$H_2O$$

$$Mg+\dots=MgCl_2+\dots$$

$$Mn + \dots = Mn_2O_3$$

Задание 3. Решите задачу:

Сколько литров газообразного водорода потребуется для полного восстановления металлической меди из оксида меди (II) массой 12 г?

Задание 4. Решите задачу

Сколько г поваренной соли и воды содержится в растворе массой 210 г с массовой долей соли 20%?

Вариант 2

Задание 1. Закончите уравнения реакций и расставьте коэффициенты. Al+O₂=......

$$Ba+H_2=....$$

$$H_2O_2 = +$$

 $Li+H_2O=....+.$

Задание 2. Вставьте пропущенные формулы и закончите уравнения реакций, расставьте коэффициенты.

HgO+.....=Hg+..... \dots +H₂SO₄=CrSO₄+ \dots+ $O_2 = B_2O_3$

Задание 3. Решите задачу:

Сколько л кислорода необходимо для получения оксида кальция массой 6 г?

Задание 4. Решите задачу

Сколько г сахара и воды нужно для приготовления 80 г раствора с массовой долей caxapa 3 %?

2. Контрольная работа №3 по теме «Основные классы неорганических соединений». Вариант 1

Задание №1. Напишите формулы всех следующих веществ, выпишите отдельно формулы только:

Кислот и солей: серной кислоты, нитрата кальция, оксида азота (II), оксида углерода (IV), азотной кислоты, гидроксида алюминия, сульфата калия, гидроксида цинка, хлорида алюминия, угольной кислоты.

Задание №2: Какие из веществ, формулы которых указаны ниже, будут реагировать с гидроксидом натрия: SO₂, Ca(OH)₂, FeCl₃, CuO, HNO₃, BaSO₄ Выпишите данные вещества и напишите соответствующие уравнения реакций, расставьте коэффициенты.

Задание №3:Напишите уравнения реакций по схеме превращений:

 $Cu -> CuO -> Cu(NO_3)_2 -> Cu(OH)_2$

Задание 4: Закончите уравнения возможных реакций:

 $Na_2O + HCl = ...$ $Mg(OH)_2 + SO_3 = ...$ $CaO + Na_2SO_4 = \dots$ $Al(OH)_3 + HBr = ...$
$$\begin{split} MgCl_2 + NaOH = & ... & K_2O + SO_3 = & ... \\ Fe(NO_3)_2 + NaOH = & ... & CaO + H_2O = & \end{split}$$

Вариант 2

Задание №1. Напишите формулы всех следующих веществ, выпишите отдельно формулы только:

Оксидов и оснований: гидроксида калия, соляной кислоты, оксида фосфора (V), хлорида бария, гидроксида меди (II), сульфата меди (II), ортофосфорной кислоты, нитрата серебра(I), оксида магния, сероводородной кислоты.

Задание №2: Какие из веществ, формулы которых указаны ниже, будут реагировать

с соляной кислотой: P2O5, MgO, CaCO3, H2SO4, NaOH . Выпишите данные вещества и напишите соответствующие уравнения реакций, расставьте коэффициенты.

Задание №3:Напишите уравнения реакций по схеме превращений:

 $Al -> Al_2O_3 -> Al_2(SO_4)_3 -> Al(OH)_3$

Задание 4: Закончите уравнения возможных реакций:

 $MgO + HCl = \dots$ $SiO_2 + NaOH = ...$ $Cu(OH)_2 + FeSO_4 = ...$ $H_2SiO_3 + HC1 = ...$ $Mg(OH)_2 + HCl = \dots$ $Ba(OH)_2 + SO_3 = \dots$ $Al_2O_3 + NaNO_3 = ...$ $K_2O + H_2SO_4 = ...$

Контрольная работа № 4 по темам: «Периодический закон и периодическая система химических элементов Д. И. Менделеева. Строение атома. Строение вещества. Химическая связь».

Вариант 1

Задание №1. Расположите элементы в порядке возрастания их металлических свойств: цезий, барий, германий, стронций, кальций.

Задание №2. Установите соответствие между типом химической связи и формулой вещества.

Тип химической связи: Формула вещества:

ковалентная неполярная;
 ионная;
 металлическая;
 ковалентная полярная.

A) Na20;
Б) Na;
В) OF2;
1 () 02.

Задание №3. Определите вид связи в соединениях: CH₄; N₂; CaCl₂; H₂S; KBr.

Задание №4.

Напишите электронную формулу атома элемента № 17 и формулы его водородного соединения, высшего оксида, соединения с кальцием.

Задание №5. Определите степень окисления элементов в соединениях: $CaCO_3$; K_2O ; NH_3

Задание №6. Закончите окислительно-восстановительные реакции, составьте электронный баланс, расставьте коэффициенты

Вариант 2

Задание №1. Расположите элементы в порядке ослабления их неметаллических свойств: сера, кремний, хлор, фосфор, алюминий.

Задание №2. Установите соответствие между типом химической связи и формулой вещества.

Тип химической связи: Формула вещества:

металлическая;
 ковалентная полярная
 ковалентная неполярная;
 ионная;
 Н2.

Задание №3. Определите вид связи в соединениях: NH₃· Cl₂; BaCl₂; HCl; LiF.

Задание №4. Напишите электронную формулу атома элемента № 25 и формулу его высшего оксида, соединения с хлором и серой. Задание №5. Определите степень окисления элементов в соединениях: $CaCO_3$; K_2O ; NH_3

Задание №5: Определите степень окисления элементов в соединениях: NaNO₃; SiO₂; PH₃.

Задание №6. Закончите окислительно-восстановительные реакции, составьте электронный баланс, расставьте коэффициенты

CuS + HNO3(конц) = CuSO4 + NO2 + H2O

4. Итоговая контрольная работа.

Вариант 1

- 1. Напишите электронную формулу атома элемента № 17 и формулы его водородного соединения, высшего оксида, соединения с кальцием. Укажите заряды ионов из которых они состоят.
- 1. Как изменяются неметаллические свойства химических элементов в ряду: кремний ----- фосфор ----- сера ----- хлор?
- 1. Даны вещества, формулы которых: SO₂, CaO, NaOH, FeCl₂, HNO₃, ZO, HCl, CuO, CO₂, BeO, Na₂SO₄, Cu(OH)₂, Al(OH)₃, Выпишите формулы оксидов и оснований.
- 1. Напишите уравнения реакций, с помощью которых можно осуществить превращения веществ, укажите тип каждой реакции:

Укажите вид химической связи в хлориде магния, молекуле водорода, в молекуле оксида серы (YI).

5. Решите задачи:

а) Какой объем кислорода потребуется для окисления 12,7 г меди до оксида меди (II)?

б) Сколько образуется щелочи при взаимодействии 12 г калия с 30 г воды?

Вариант 2

- 1. Напишите электронную формулу атома элемента № 16 и формулы его водородного соединения, высшего оксида, соединения с магнием. Укажите заряды ионов, из которых они состоят.
- 1. Как изменяются металлические свойства химических элементов в ряду: литий----- натрий ----- калий ----- рубидий ----- цезий?
- 1. Даны вещества, формулы которых: CuCl₂, Fe(OH)₂, KOH, P₂O₅, BaSO₄, H₂SO₄, Al₂O₃, ZnO, HNO₃, FeO, SiO₂, Na₂O, CaCO₃. Выпишите формулы кислот и основных оксилов.
- 1. Напишите уравнения реакций, с помощью которых можно осуществить превращения веществ, укажите тип каждой реакции.

Укажите вид химической связи в хлориде железа, в молекуле водорода, в молекуле воды.

5. Решите задачи:

- а) Какова масса оксида кальция, образующегося при взаимодействии 12 г кальция с кислородом?
- б) Какова масса, образовавшегося осадка, полученного при взаимодействии 20 г хлорида меди с 15 г гидроксида натрия?

Контрольные работы 9 класс

1. Контрольная работа №1 по теме «Электролитическая диссоциация».

ПЛАН РАБОТЫ

$N_{\underline{0}}$		Тип задания	Ma
задания	Проверяемые элементы содержания	(краткий ответ,	ксимальны
		развернутый ответ –	й балл
		KO, PO)	
1	Типы химических реакций	КО	1
2	Окислительно-восстановительные	КО	1
	реакции		
3	Растворы	КО	1
4	Электролиты и неэлектролиты	КО	1
5	Электролитическая диссоциация	КО	1
	кислот, солей и оснований		
6	Среда водных растворов кислот и	КО	1
	щелочей, индикаторы		
7	Сильные и слабые электролиты	КО	1
8	Взаимодействие ионов в растворе	КО	1
9	Сокращённые ионные уравнения	КО	1
	реакций		
1	Взаимодействие ионов в растворе	КО	2
0			
1	Составление уравнений	PO	3
1	электролитической диссоциации		
1	Расчёт массовой доли вещества в	PO	2
2	растворе		

ШКАЛА ПЕРЕВОДА БАЛЛОВ В ШКОЛЬНУЮ ОТМЕТКУ

Максимальный первичный балл за работу	16
до 6 баллов	отметка «2»
от 7 до 9 баллов	отметка «3»
от 10 до 13 баллов	отметка «4»
от 14 до 16 баллов	отметка «5»

Вариант № 1

При выполнении заданий 1-9 выберите номер правильного ответа.

- 1. Реакция, уравнение которой CaCO_{3 (тв)} + SiO_{2 (тв)} = CaSiO_{3 (тв)} + CO_{2 (газ)} Q, является реакцией
 1) экзотермической, замещения 2) гетерогенной, эндотермической
 3) гомогенной, окислительно-восстановительной 4) обратимой, разложения
 2. Окислительно-восстановительной является реакция
 1) FeCl₂ + 2NaOH = Fe(OH)₂ + 2NaCl
 2) NaOH + HCl = H₂O + NaCl
 3) CaCO₃ + 2HCl = CaCl₂ + H₂O + CO₂
 4) Mg + H₂SO₄ = MgSO₄ + H₂
 3. Верны ли следующие суждения о растворах?
 А. В растворах существует граница раздела фаз между его компонентами.
 Б. Растворы состоят из двух и более компонентов.
 - 1) верно только А 3) верны оба суждения
 - 2) верно только Б 4) оба суждения неверны
 - 4. Электрический ток проводит
 - 1) раствор сахара 3) твёрдая поваренная соль
 - 2) расплав сахара 4) расплав поваренной соли
- 5. Наибольшее число ионов образуется при электролитической диссоциации в водном растворе одного моля
 - 1) CrCl₃ 2) H₂SO₃ 3) Ca(OH)₂ 4) Al₂(SO₄)₃
 - 6. Окраска универсального индикатора изменится на красную в водном растворе
 - 1) глюкозы 3) иодида натрия
 - 2) серной кислоты 4) гидроксида калия
 - 7. Сильным электролитом является
 - 1) азотистая кислота
 3) нитрит натрия

 2) азотная кислота
 4) нитрат натрия
 - 8. Осадок образуется при взаимодействии двух ионов
 - 1) H⁺ и CO₃²⁻ 2) H⁺ и NO₃ 3) Ba²⁺ и CO₃²⁻ 4) Ba²⁺ и NO₃
- 9. Сокращённое ионное уравнение $Ba^{2+} + SO_4^{2-} = BaSO_4$ соответствует взаимодействию
 - 1) BaO и H₂SO₄ 3) BaCO₃ и H₂SO₄
 - 2) BaCl₂ и Na₂SO₄ 4) Ba(OH)₂ и H₂SO₄

В задании 10 к каждому элементу первого столбца подберите соответствующий элемент из второго столбца. Цифры в ответе могут повторяться.

10. Установите соответствие между взаимодействующими ионами и наблюдаемым результатом взаимодействия.

ВЗАИМОДЕЙСТВУЮЩИЕ

РЕЗУЛЬТАТ

ИОНЫ

ВЗАИМОДЕЙСТВИЯ

- A) H⁺ и HS⁻
- Б) Mg²⁺ и CO₃²⁻
- B) Fe³⁺ и OH
- Г) Pb²⁺ и I

- 1) выделение газа
 - 2) выделение осадка

Для заданий 11, 12 запишите полные решения.

- 11. Напишите уравнения электролитической диссоциации:
- а) фосфата натрия
- б) соляной кислоты
- в) гидроксида лития
- 12. К 150 г 10%-ного раствора соли добавили 50 г 30%-ного раствора этой же соли. Определите массовую долю соли в полученном растворе.

Вариант № 2

При выполнении заданий 1-9 выберите номер правильного ответа.

- 1. Реакция, уравнение которой $C_{(TB)} + SiO_{2}_{(TB)} + 2Cl_{2}_{(TB)} = SiCl_{4} + 2CO Q$, является реакцией
 - 1) экзотермической, замещения
 - 2) необратимой, разложения
 - 3) гомогенной, эндотермической
 - 4) гетерогенной, окислительно-восстановительной
 - 2. Окислительно-восстановительной является реакция
 - 1) $SO_3 + H_2O = H_2SO_4$
 - $2) Na_2CO_3 = Na_2O + CO_2$
 - 3) $C + O_2 = CO_2$
 - 4) $MgSO_4 + 2NaOH = Mg(OH)_2 + Na_2SO_4$
 - 3. Верны ли следующие суждения о растворах?
- А. Раствор соли, находящийся над кристаллами этой же соли, является перенасыщенным.
 - Б. В насыщенном растворе поваренной соли сахар уже не будет растворяться.
 - 1) верно только А

3) верны оба суждения

2) верно только Б

- 4) оба суждения неверны
- 4. К электролитам относится
- 1) бензин

3) водный раствор глюкозы

2) речной песок

- 4) водный раствор уксусной кислоты
- 5. Хлорид-ионы образуются при электролитической диссоциации в водном растворе одного моля

 - 1) KClO 2) KClO₄
- 3) KClO₃
- 4) FeCl₃
- 6. В растворе иодоводородной кислоты не изменит окраску
- 1) лакмус

3) фенолфталеин

2) метилоранж

- 4) универсальный индикатор
- 7. Формулы только сильных электролитов расположены в ряду:
- 1) Na₂S, HF, NaOH

3) H_2SO_4 , $CuSO_4$, $Cu(OH)_2$

2) KOH, HI, Na₂SO₄

- 4) Na₂SiO₃, H₂SiO₃, SiO₂
- 8. Газ выделяется при взаимодействии в растворе двух ионов:
- 1) H⁺ и Cl⁻

3) H⁺ и SiO₃²⁻

2) H⁺ и SO₃²⁻

- 4) Ca²⁺ и CO₃²⁻
- $Ca^{2+} + CO_3^{2-}$ = $CaCO_3$ cootbetctbyet 9. Сокращённое ионное уравнение взаимодействию
 - 1) CaO и CO₂

3) Ca(NO₃)₂ и BaCO₃

2) CaCl₂ и Na₂CO₃

4) Ca(OH)₂ и CO₂

В задании 10 к каждому элементу первого столбца подберите соответствующий элемент из второго столбца. Цифры в ответе могут повторяться.

10. Установите соответствие между взаимодействующими ионами и наблюдаемым результатом взаимодействия.

ВЗАИМОДЕЙСТВУЮЩИЕ

РЕЗУЛЬТАТ

ИОНЫ

ВЗАИМОДЕЙСТВИЯ

1) выделение газа

A) H⁺ и SO₃²⁻ Б) H⁺ и SiO₃²⁻

2) выделение осадка

- B) H⁺ и CO₃²⁻
- Γ) Ba²⁺ и CO₃²⁻

Для заданий 11, 12 запишите полные решения.

- 11. Напишите уравнения электролитической диссоциации:
- а) сульфата железа(III)
- б) фосфорной кислоты
- в) гидроксида кальция по первой ступени
- 12. В 657 мл воды растворили 44,8 л хлористого водорода. Определите массовую долю кислоты в полученном растворе.

ОТВЕТЫ К ЗАДАНИЯМ С КРАТКИМ ОТВЕТОМ

Ba	Задание									
риант	-	2	(4	4	(•	8	Ç	-
										0
1	2	4	2	4	2	2			2	1
										222
2	4	3	۷	4		3	4	,		
										212

ОТВЕТЫ К ЗАДАНИЯМ С РАЗВЁРНУТЫМ ОТВЕТОМ

Вариант 1

11.

Содержание верного ответа и критерии оценивания		Ба
	ллы	
a) $Na_3PO_4 = 3Na^+ + PO_4^{3-}$		
$6) HCl = H^+ + Cl^-$		
B) $LiOH = Li^+ + OH^-$		
Правильно записаны 3 уравнения реакций		3
Правильно записаны 2 уравнения реакций		2
Правильно записано 1 уравнение реакций		1

Все уравнения записаны неверно		0
	Максимальный балл	3

12.

Содержание верного ответа и критерии оценивания		Ба
	ллы	
$m_{B-Ba} = 150*0, 1 = 15 \Gamma$		
$m_{\text{B-Ba}} = 50*0,3 = 15 \Gamma$		
$m_{\text{B-Ba} 3} = 15 + 15 = 30 \; \Gamma$		
$m_{p-pa\ 3} = 150 + 50 = 200\ \Gamma$		
$\omega = 30/200 = 0,15$ или 15%		
Ответ правильный		2
Ход вычислений правильный, но сделана арифметическая ошибка		1
Ответ неправильный		0
Максимальный балл		3

<u>Вариант 2</u> 11.

Содержание верного ответа и критерии оценивания		Ба
	ллы	
a) $Fe_2(SO_4)_3 = 2Fe^{3+} + 3SO_4^{2-}$		
6) $H_3PO_4 = 3H^+ + PO_4^{3-}$		
$B) Ca(OH)_2 = CaOH^+ + OH^-$		
Правильно записаны 3 уравнения реакций		3
Правильно записаны 2 уравнения реакций		2
Правильно записано 1 уравнение реакций		1
Все уравнения записаны неверно		0
Максимальный балл		3

12.

Содержание верного ответа и критерии оценивания		Ба
	ллы	
n(HCl) = 44.8/22.4 = 2 моль		
$m(HCl) = 2*36,5 = 73 \Gamma$		
$m_{p-pa} = 657 + 73 = 730 \ \Gamma$		
$\omega = 73/730 = 0,1$ или 10%		
Ответ правильный		2
Ход вычислений правильный, но сделана арифметическая ошибка		1
Ответ неправильный		0
Максимальный балл		3

2. <u>Контрольная работа №2 по теме «Неметаллы».</u>

ПЛАН РАБОТЫ

№ задания	Проверяемые элементы содержания	Тип задания (краткий ответ, развернутый ответ – КО, РО)	Ма ксимальны й балл
1	Строение атомов и закономерности	КО	1
	изменения свойств элементов VIA и VIIA		

	групп		
2	Аллотропные модификации	КО	1
	элементов VIA группы		
3	Химически свойства простых	КО	1
	веществ элементов VIA группы		
4	Химически свойства водородных	КО	1
	соединений элементов VIA группы		
5	Химически свойства оксидов серы	КО	1
6	Vyvyvyvaavav anavartna aanavav vyvavatativ	КО	1
7	Химически свойства серной кислоты	КО	1
8	Качественные реакции на галогенид-	КО	1
	ионы		
9	Окислительно-восстановительные	КО	2
	свойства серы и её соединений		
1	Химические свойства серы и её	КО	2
0	соединений		
1	Окислительно-восстановительные	PO	3
1	реакции серы и её соединений		
1	Проведение расчётов на основе	PO	2
2	уравнений реакций. Расчёт выхода		
	продуктов реакции		
		Сумма баллов	17

ШКАЛА ПЕРЕВОДА БАЛЛОВ В ШКОЛЬНУЮ ОТМЕТКУ

Максимальный первичный балл за работу	17
до 5 баллов	отметка «2»
от 6 до 9 баллов	отметка «3»
от 10 до 13 баллов	отметка «4»
от 14 до 17 баллов	отметка «5»

Вариант № 1

При выполнении заданий 1-8 выберите номер правильного ответа.

- 1. Атомы фтора и хлора имеют?
- 1) одинаковый радиус
- 2) одинаковую высшую валентность
- 3) одинаковое число электронных слоёв
- 4) одинаковое число электронов на внешнем энергетическом уровне
- 2. Верны ли следующие суждения об озоне?
- А. Озон отличается от кислорода числом атомов в молекуле.
- Б. Озон не поддерживает горения.
- 1) верно только А

3) верны оба суждения

2) верно только Б

4) оба суждения неверны

3. Сера является восстановителем в реакции с

1) водородом

3) натрием

2) кислородом

4) цинком

4. Сероводород реагирует с раствором

- 1) CuCl₂
- 2) NaBr
- 3) FeCl₂
- 4) K₂SO₄

5. Оксид серы(VI) не реагирует с

- 1) CO₂ 3) BaO 2) H₂O 4) Ca(OH)₂
- 6. Разбавленная серная кислота не взаимодействует с
- 1) карбонатом натрия

3) сульфитом натрия

2) сульфидом натрия

4) нитратом натрия

7. В реакции концентрированной серной кислоты с цинком окислителем является атом

1) цинка

3) водорода

2) серы

4) кислорода

8. Отличить раствор фторида натрия от раствора хлорида натрия можно с помощью раствора

1) нитрата алюминия

3) нитрата бария

2) нитрата кальция

4) нитрата калия

В задании 9 к каждому элементу первого столбца подберите соответствующий элемент из второго столбца. Цифры в ответе могут повторяться.

9. Установите соответствие между схемой окислительно-восстановительной реакции и изменением степени окисления серы в этой реакции.

СХЕМА
РЕАКЦИИ

ОКИСЛЕНИЯ СЕРЫ

A)
$$H_2S + O_2$$
 $SO_2 + H_2O$
1) 0 — 2

Б) $H_2SO_4 + Cu$
 $CuSO_4 + H_2O + SO_2$
2) 0 — +4

B) $Na_2SO_3 + KMnO_4 + H_2SO_4$
 $Na_2SO_4 + K_2SO_4 + MnSO_4 + H_2O$
1) 0 — 2

2) 0 — +4

3) -2 — +4

5) +6 — 2

6) +4 — +6

Ответом к заданию 10 является последовательность цифр. Запишите полученные цифры в порядке возрастания.

- 10. Сернистый газ выделяется при взаимодействии
- 1) разбавленной серной кислоты с цинком
- 2) концентрированной серной кислоты с медью
- 3) разбавленной серной кислоты с сульфитом натрия
- 4) разбавленной серной кислоты с нитратом меди
- 5) разбавленной серной кислоты с карбонатом натри
- 6) концентрированной серной кислоты с углеродом

Для заданий 11, 12 запишите полные решения.

11. Используя метод электронного баланса, составьте уравнение реакции

$$Zn + H_2SO_4 \longrightarrow ZnSO_4 + H_2S + H_2O$$

Определите окислитель и восстановитель.

12. При каталитическом окислении 11, 2 л (н.у.) сернистого газа было получено 24 г оксида серы(VI). Определите выход оксида серы(VI) (в процентах от теоретически возможного).

При выполнении заданий 1-8 выберите номер правильного ответа.

- 1. Число энергетических уровней атома фтора равно
- 1) 5 2) 2
- 3)3
- 2. Верны ли следующие суждения об аллотропных превращениях серы?

4) 7

- А. Превращение серы ромбической в серу пластическую является экзотермическим процессом.
- Б. Процесс перехода серы ромбической в серу пластическую является необратимым процессом.
 - 1) верно только А

3) верны оба суждения

2) верно только Б

- 4) оба суждения неверны
- 3. Продуктом горения серы на воздухе является
- 1) сероводород

3) оксид серы(VI)

2) оксид серы (IV)

- 4) серая кислота
- 4. Сероводород не реагирует с
- 1) хлором

3) соляной кислотой

2) кислородом

4) гидроксидом калия

- 5. С образованием осадка оксид серы(IV) реагирует с раствором
- 2) BaCl₂
- 3) NaOH
- 4) Ba(OH)₂
- 6. Разбавленная серная кислота не взаимодействует с
- 1) карбонатом лития

3) сульфидом лития

2) нитратом цинка

- 4) нитратом бария
- 7. На холоде концентрированная серная кислота реагирует с
- 1) алюминием

3) хромом

2) железом

- 4) цинком
- 8. Для качественного определения соляной кислоты в растворе можно использовать
- 1) лакмус и нитрат бария
- 2) фенолфталеин и ацетат свинца
- 3) карбонат калия и нитрат серебра
- 4) сульфат меди(II) и гидроксид натрия

В задании 9 к каждому элементу первого столбца подберите соответствующий элемент из второго столбца. Цифры в ответе могут повторяться.

9. Установите соответствие между схемой окислительно-восстановительной реакции и изменением степени окисления серы в этой реакции.

ИЗМЕНЕНИЕ СТЕПЕНИ **CXEMA** РЕАКЦИИ ОКИСЛЕНИЯ СЕРЫ A) $H_2S + Br_2 \rightarrow$ $SO_2 + 2HBr$ 1) -2Б) H₂SO₄ + Zn ► $ZnSO_4 + H_2O + S$ 2) +6B) $H_2SO_4 + C$ $CO_2 + SO_2 + H_2O$ 3)-2 Γ) $K_2S + K_2Cr_2O_7 + H_2SO_4$ 4) + 6 -5) +6 - $K_2SO_4 + Cr_2(SO_4)_3 + H_2O$ →0 6) $+4 \longrightarrow +6$

Ответом к заданию 10 является последовательность цифр. Запишите полученные цифры в порядке возрастания.

- 10. Сероводород можно получить действием разбавленной серной кислоты на
- 1) сульфид меди(II)

4) гидросульфид натрия

2) сульфид цинка

5) сульфат меди(II)

Для заданий 11, 12 запишите полные решения.

11. Используя метод электронного баланса, составьте уравнение реакции $H_2O_2 + PbS \longrightarrow PbSO_4 + H_2O$

Определите окислитель и восстановитель.

12. При горении сероводорода в условиях недостатка кислорода было получено 5, 12 г серы. Выход серы составил 80% от теоретически возможного. Определите объём (н.у.) сгоревшего сероводорода.

ОТВЕТЫ К ЗАДАНИЯМ С КРАТКИМ ОТВЕТОМ

Ba	Задание								
риант			,	:		,	8	9	
									0
1						,	2	,	1
								461	36
2		,				4	3		1
								543	34

ОТВЕТЫ К ЗАДАНИЯМ С РАЗВЁРНУТЫМ ОТВЕТОМ

Вариант 1

11.

Содержание верного ответа и критерии оценивания		Ба
	ллы	
1) Составлен электронный баланс:		
$ 4 Z_n^0 = Z_n^{+4}$		
$1 S^{+6} + 8e S^{-2}$		
2) Расставлены коэффициенты в уравнении реакции:		
$4Zn + 5H_2SO_4 = 4ZnSO_4 + H_2S + 4H_2O$		
3) Указано, что цинк в степени окисления 0 является восстановителем, а		
сера в степени окисления +6 – окислителем		
Ответ правильный и полный, включает все названные элементы		3
В ответе допущена ошибка только в одном элементе		2
В ответе допущены ошибки в двух элементах		1
Все элементы ответа записаны неверно		0
Максимальный балл		3

12.

12.		
Содержание верного ответа и критерии оценивания		Ба
	ллы	
1) Составлено уравнение реакции:		
$O_2 + 2SO_2 = 2SO_3$		
2) Рассчитаны количества вещества SO ₂ и SO ₃ :		
$n(SO_2) = 11,2:22,4 = 0,5$ моль		
$n(SO_3) = n(SO_2) = 0.5$ моль		
3) Определён выход оксида серы(VI):		
$m_{\text{Teop.}}(SO_3) = 0.5 *80 = 40 \Gamma$		
$\eta(SO_3) = 24:40 = 0,6$ или 60%		

Ответ правильный и полный, включает все названные элементы	3
Правильно записаны два первых элемента из названных выше	2
Правильно записан один из названных выше элементов (1-й или 2-й)	1
Все элементы ответов записаны неверно	0
Максимальный балл	3

Вариант 2 11.

Содержание верного ответа и критерии оценивания		Ба
	ллы	
1) Составлен электронный баланс:		
$1 S^{-2} - 8c \rightarrow S^{+6}$		
$4 20^{-1} + 2e$ 0^{-2}		
2) Расставлены коэффициенты в уравнении реакции:		
4 H2O2 + PbS = PbSO4 + 4H2O		
3) Указано, что сера в степени окисления –2 является восстановителем, а		
кислород в степени окисления –1 – окислителем		
Ответ правильный и полный, включает все названные элементы		3
В ответе допущена ошибка только в одном элементе		2
В ответе допущены ошибки в двух элементах		1
Все элементы ответа записаны неверно		0
Максимальный балл		3

12.

Содержание верного ответа и критерии оценивания		Ба
	ллы	
1) Составлено уравнение реакции:		
$O_2 + 2H_2S = 2S + 2H_2O$		
2) Рассчитано теоретически возможное количество вещества S:		
$m_{\text{reop.}}(S) = 5.12 * 0.8 = 6.4 \Gamma$		
n(S) = 6,4:32 = 0,2 моль		
3) Определён объем сероводорода:		
$n(H_2S) = n(S) = 0.2$ моль		
$V(H_2S) = 0.2 *22.4 = 4.48 \text{ k}$		
Ответ правильный и полный, включает все названные элементы		3
Правильно записаны два первых элемента из названных выше		2
Правильно записан один из названных выше элементов (1-й или 2-й)		1
Все элементы ответов записаны неверно		0
Максимальный балл		3

3. Контрольная работа №3 (Итоговая).

ПЛАН РАБОТЫ

$N_{\underline{0}}$		Тип задания	Ma
задания	Проверяемые элементы содержания	(краткий ответ,	ксимальны
		развернутый ответ –	й балл
		KO, PO)	
1	Типы химических реакций	КО	1
2	Окислительно-восстановительные	КО	1
	реакции		

3	Закономерности протекания	КО	1
	химических реакций		
4	Химические свойства простых	КО	1
	веществ неметаллов		
5	Химические свойства простых	КО	1
	веществ металлов		
6	Химические свойства оксидов	КО	1
	металлов и неметаллов		
7	Химические свойства кислот и	КО	1
	оснований		
8	Качественные реакции на катионы и	КО	1
	анионы		
9	Характерные химические свойства	КО	2
	основных классов неорганических веществ		
1	Первоначальные сведения об	КО	2
0	органических веществах		
1	Взаимосвязь различных классов	PO	3
1	неорганических веществ		
1	Вычисление количества вещества,	PO	2
2	массы или объёма вещества по количеству		
	вещества, массе или объёму одного из		
	реагентов или продуктов реакции		
		Сумма баллов	17

ШКАЛА ПЕРЕВОДА БАЛЛОВ В ШКОЛЬНУЮ ОТМЕТКУ

Максимальный первичный балл за работу	17
до 5 баллов	отметка «2»
от 6 до 9 баллов	отметка «3»
от 10 до 13 баллов	отметка «4»
от 14 до 17 баллов	отметка «5»

Вариант № 1

При выполнении заданий 1-8 выберите номер правильного ответа.

- 1. Химическая реакция, уравнение которой Zn + 2HCI → $ZnCl_2 + H_2$ является реакцией
- 1) обмена

3) соединения

2) замещения

- 4) разложения
- 2. Окислительно-восстановительной реакцией является реакция между
- 1) хлоридом кальция и карбонатом натрия
- 2) аммиаком и соляной кислотой
- 3) оксидом натрия и водой
- 4) кальцием и водой
- 3. Для увеличения скорости реакции, уравнение которой

$$Zn + 2HCI \rightarrow ZnCl_2 + H_2$$
 является реакцией

- 1) уменьшить концентрацию водорода
- 2) увеличить количество цинка
- 3) увеличить концентрацию соляной кислоты

- 4) уменьшить концентрацию соляной кислоты
- 4. Углерод не реагирует с
- 1) кислородом

3) медью

2) серой

- 4) оксидом меди
- 5. С гидроксидом натрия реагирует
- 1) алюминий

3) железо

2) кальций натрий

- 4) медь
- 6. Оксид углерода(II) реагирует с
- 1) оксидом меди

- 3) гидроксидом алюминия
- 2) бромоводородной кислотой
- 4) хлоридом калия
- 7. Гидроксид бария не реагирует с
- 1) сульфатом натрия

3) сульфатом меди

2) хлоридом алюминия

- 4) хлоридом лития
- 8. Доказать наличие в растворе карбонат-аниона можно с помощью раствора
- 1) гидроксида натрия

3) хлорида калия

2) серной кислотой

4) сульфата натрия

В задании 9 к каждому элементу первого столбца подберите соответствующий элемент из второго столбца. Цифры в ответе могут повторяться.

9. Установите соответствие между веществом и реагентами, с которыми оно может взаимодействовать.

ВЕЩЕСТВО

A) CO

1) O₂, CuO

Б) BaCl₂

2) AgNO₃, Na₂SO₄

B) Ca(OH)₂

3) HCl, Na₂CO₃

РЕАГЕНТЫ

4) Cu, H₂O

Ответом к заданию 10 является последовательность цифр. Запишите полученные цифры в порядке возрастания.

- 10. Какие суждения об уксусной кислоте являются верными?
- 1) молекула уксусной кислоты содержит 1 атом кислорода
- 2) уксусная кислота хорошо растворима в воде
- 3) атомы углерода в молекуле уксусной кислоты соединены двойной связью
- 4) уксусная кислота реагирует с карбонатом натрия
- 5) уксусная кислота вступает в реакцию с медью

Для заданий 11, 12 запишите полные решения.

11. Дана схема превращений

$$SO_2 \longrightarrow S \longrightarrow ZnS \longrightarrow H_2S$$

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения.

12. Вычислите объём аммиака, образующегося при взаимодействии 4 г гидроксида натрия с 52,8 г сульфата аммония.

Вариант № 2

При выполнении заданий 1-8 выберите номер правильного ответа.

1. Химическая реакция, уравнение которой NaOH + HCl

 $NaCl + H_2O$

является реакцией 1) обмена

3) соединения

2) замещения

- 4) разложения
- 2. Окислительно-восстановительной реакцией является реакция между
 - 1) хлоридом меди(II)
 - 2) сероводородом и оксидом серы(IV)
 - 3) гидроксидом натрия и хлоридом меди(II)
 - 4) гидроксидом натрия и оксидом серы(IV)
 - 3. При увеличении давления возрастёт скорость реакции, уравнение которой
 - 1) $Zn + 2HCl = ZnCl_2 + H_2$
 - 2) $CaCO_3 + 2HCl = CaCl_2 + CO_2 + 2H_2O$
 - 3) $LiOH + HCl = LiCl + H_2O$
 - 4) $H_2 + Cl_2 = 2HCl$
 - 4. Сера не реагирует с
 - 1) кислородом

3) медью

2) водородом

- 4) азотом
- 5. С углекислым газом реагирует
- 1) цинк

3) магний

2) железо

- 4) медь
- 6. Оксид алюминия не реагирует с
- 1) оксидом меди

- 3) гидроксидом натрия
- 2) бромоводородной кислотой
- 4) оксидом калия
- 7. И концентрированная серая кислота и гидроксид натрия реагируют с
- 1) сульфатом меди(II)
- 3) сульфатом железа(II)
- 2) карбонатом магния
- 4) нитратом железа(III)
- 8. Доказать наличие в растворе катионов свинца можно с помощью раствора
- 1) нитрата натрия

3) нитрата бария

2) иодида калия

4) ацетата магния

В задании 9 к каждому элементу первого столбца подберите соответствующий элемент из второго столбца. Цифры в ответе могут повторяться.

9. Установите соответствие между веществом и реагентами, с которыми оно может взаимодействовать.

ВЕЩЕСТВО А) Р

РЕАГЕНТЫ

- 1) KOH, CaO
- Б) Fe₂O₃

- 2) O₂, HNO₃
- B) H_3PO_4 3) HCl, C
 - 4) Cu, H₂O

Ответом к заданию 10 является последовательность цифр. Запишите полученные цифры в порядке возрастания.

- 10. Какие суждения о глицерине являются верными?
- 1) молекула уксусной кислоты содержит 3 атома кислорода
- 2) глицерин является газообразным веществом (н.у.)
- 3) атомы углерода в молекуле глицерина соединены с атомами кислорода двойной связью
 - 4) для глицерина характерны реакции присоединения
 - 5) глицерин вступает в реакцию с натрием

Для заданий 11, 12 запишите полные решения.

11. Дана схема превращений

$$\stackrel{\frown}{P}$$
 P_2O_5 $Ca_3(PO_4)_2$ \longrightarrow P

Напишите молекулярные уравнения реакций, с помощью которых можно осуществить указанные превращения.

12. Вычислите массу соли, образующегося при взаимодействии 5,6 г железа с 4,48 л хлора.

ОТВЕТЫ К ЗАДАНИЯМ С КРАТКИМ ОТВЕТОМ

Ba		Задание								
риант	-			4		(7	8	g	-
										0
1			<i>'</i>				4		,	2
									23	4
2			4	4			3	2	2	
									31	5

ОТВЕТЫ К ЗАДАНИЯМ С РАЗВЁРНУТЫМ ОТВЕТОМ

Вариант 1

11.

Содержание верного ответа и критерии оценивания		Ба
	ллы	
$SO_2 + 2H_2S$ $3S + 2H_2O$		
Zn + S = ZnS		
$ZnS + 2HCl = ZnCl_2 + H_2O$		
Ответ правильный и полный, включает все названные элементы		3
Правильно записаны 2 уравнения реакций		2
Правильно записано 1 уравнение реакций		1
Все элементы ответов записаны неверно		0
Максимальный балл		3

12.

Содержание верного ответа и критерии оценивания		Ба
	ллы	
1) Составлено уравнение реакции:		
$(NH_4)_2SO_4 + 2NaOH = 2NH_3 + Na_2SO_4 + H_2O$		
2) Рассчитаны количества вещества NaOH и (NH ₄) ₂ SO ₄ :		
n(NaOH) = 4:40 = 0,1 моль		
$n((NH_4)_2SO_4) = 52.8:132 = 0.4$ моль — избыток		
3) Определён объём NH ₃ :		
по уравнению реакции $n(NH_3) = n(NaOH) = 0,1$ моль		
$V(NH_3) = 0.1 *22.4 = 2.24 \pi$		
Ответ правильный и полный, включает все названные элементы		3
Правильно записаны два первых элемента из названных выше		2
Правильно записан один из названных выше элементов (1-й или 2-й)		1
Все элементы ответов записаны неверно		0
Максимальный балл		3

11.

Содержание верного ответа и критерии оценивания		Ба
	ллы	
$4P + 5O_2 = 2P_2O_5$		
$P_2O_5 + 3Ca(OH)_2 = Ca_3(PO_4)_2 + 3H_2O$		
$Ca_3(PO_4)_2 + 5C + 3SiO_2 = 3CaSiO_3 + 2P + 5CO$		
Ответ правильный и полный, включает все названные элементы		3
Правильно записаны 2 уравнения реакций		2
Правильно записано 1 уравнение реакций		1
Все элементы ответов записаны неверно		0
Максимальный балл		3

12.

·		
Содержание верного ответа и критерии оценивания		Ба
	ллы	
1) Составлено уравнение реакции:		
$2\text{Fe} + 3\text{Cl}_2 \rightarrow 2\text{FeCl}_3$		
2) Рассчитаны количества вещества Fe и Cl ₂ :		
n(Fe) = 5.6:56 = 0.1 моль		
$n(Cl_2) = 4,48:22,4 = 0,2$ моль— избыток		
3) Определена масса FeCl ₃ :		
по уравнению реакции $n(FeCl_3) = n(Fe) = 0,1$ моль		
$m(FeCl_3) = 0.1 *162.5 = 16.25\Gamma$		
Ответ правильный и полный, включает все названные элементы		3
Правильно записаны два первых элемента из названных выше		2
Правильно записан один из названных выше элементов (1-й или 2-й)		1
Все элементы ответов записаны неверно		0
Максимальный балл		3